Oligodeoxynucleotide-directed photo-induced cross-linking of HIV proviral DNA via triple-helix formation.

نویسندگان

  • C Giovannangéli
  • N T Thuong
  • C Hélène
چکیده

The HIV proviral genome contains two copies of a 16 bp homopurine.homopyrimidine sequence which overlaps the recognition and cleavage site of the Dra I restriction enzyme. Psoralen was attached to the 16-mer homopyrimidine oligonucleotide, d5'(TTTTCT-TTTCCCCCCT)3', which forms a triple helix with this HIV proviral sequence. Two plasmids, containing part of the HIV proviral DNA, with either one (pLTR) or two (pBT1) copies of the 16-bp homopurine.homopyrimidine sequence and either 4 or 14 Dra I cleavage sites, respectively, were used as substrates for the psoralen-oligonucleotide conjugate. Following UV irradiation the two strands of the DNA targeted sequence were cross-linked at the triplex-duplex junction. The psoralen-oligonucleotide conjugate selectively inhibited Dra I enzymatic cleavage at sites overlapping the two triple helix-forming sequences. A secondary triplex-forming site of 8 contiguous base pairs was observed on the pBT1 plasmid when binding of the 16 base-long oligonucleotide was allowed to take place at high oligonucleotide concentrations. Replacement of a stretch of six cytosines in the 16-mer oligomer by a stretch of six guanines increased binding to the primary sites and abolished binding to the secondary site under physiological conditions. These results demonstrate that oligonucleotides can be designed to selectively recognize and modify specific sequences in HIV proviral DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine.

A homopurine-homopyrimidine sequence of human immunodeficiency virus (HIV) proviral DNA was chosen as a target for triple-helix-forming oligonucleotides. An oligonucleotide containing three bases (thymine, cytosine, and guanine) was shown to bind to its target sequence under physiological conditions. This oligonucleotide is bound in a parallel orientation with respect to the homopurine sequence...

متن کامل

Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites.

Synthetic oligodeoxynucleotides represent promising tools for gene inhibition in live systems. Triple helix-forming oligonucleotides, which bind to double-stranded DNA, are of special interest since they are targeted to the gene itself rather than to its mRNA product, as in the antisense strategy. Triple helix-forming oligonucleotides can be coupled to DNA-modifying agents and used to introduce...

متن کامل

Inhibition of replication of fresh HIV type 1 patient isolates by a polypurine tract-specific self-complementary oligodeoxynucleotide.

A previously described self-complementary oligodeoxynucleotide termed triplex-forming oligodeoxynucleotide (TFO A), 54 bases in length, designed against the polypurine tract of HIV-1 RNA, inhibited viral replication at a 1 to 3 microM concentration in acutely infected cells, whereas antisense and scrambled sequence oligodeoxynucleotides were ineffective. Three HIV-1 viral isolates from patients...

متن کامل

Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking.

Site-specific labeling of covalently closed circular DNA was achieved by using triple helix-forming oligonucleotides 10, 11 and 27 nt in length. The sequences consisted exclusively of pyrimidines (C and T) with a reactive psoralen at the 5'-end and a biotin at the 3'-end. The probes were directed to different target sites on the plasmids pUC18 (2686 bp), pUC18/4A (2799 bp) and pUC1 8/4A-H 1 (25...

متن کامل

Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA.

Reverse transcription of retroviral RNA into double-stranded DNA is catalyzed by reverse transcriptase (RT). A highly conserved polypurine tract (PPT) on the viral RNA serves as primer for plus-strand DNA synthesis and is a possible target for triple-helix formation. Triple-helix formation during reverse transcription involves either single-stranded RNA or an RNA.DNA hybrid. The effect of tripl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 20 16  شماره 

صفحات  -

تاریخ انتشار 1992